
Business Process Recovery Based on System Log
and Information of Organizational Structure

Ryota Mibe∗†, Tadashi Tanaka∗, Takashi Kobayashi†, and Shingo Kobayashi‡
∗Center for Technology Innovation Systems Engineering, Research & Development Group Hitachi,Ltd.

292 Yoshida-cho, Totsuka-ku, Yokohama-shi, 244-0817 Japan
†School of Computing, Tokyo Institute of Technology. 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan

‡Japan EXpert Clone Corporation. KDX Shinjuku286 bldg. 9F, 2-8-6 Shinjuku, Shinjuku-ku, Tokyo 160-0022 Japan

Abstract—In most current cases of enterprise system develop-
ment, the requirement specifications should follow those of an
existing legacy system. However, it is difficult to identify high-
level specifications, such as business process steps, from legacy
and undocumented systems. In this paper, we propose a method
to recover an abstract business process by using system logs and
the organizational information of the operators using an existing
legacy system. Our method provides a hierarchical view based
on a clustering technique to find abstract activities that consist
of a series of operations. We also propose a method to extract
the main operation in a cluster. We evaluated the effectiveness
of our method through experiments on a real system.

I. Introduction

Approximately 80 percent of business activities are sup-
ported by some kind of software systems. This means that
the specifications of existing systems need to be considered
in most cases of novel system development. However, few
recent systems contain any explicit documentation or models
[1], because of which it takes a considerable amount of time
to understand them.

To solve this problem, various specification recovery meth-
ods have been proposed. We can categorize them into two
types: static-analysis based and dynamic analysis-based ap-
proaches. Static analysis-based methods recover the domain
model and the software architecture [2]–[6] through source
code analysis. It has been used for 20 years, and is useful for
exhaustively recovering procedure-level specifications. How-
ever, it does not recover any specifications of modules that
have no source code, such as a library or middleware, or
specifications of the relations between functions, like business
processes for systems that have multiple functions for a
workflow.

On the contrary, dynamic analysis based approaches are
based on run-time information, such as operation logs and
execution trace data [7]–[9]. These approaches can recover
sequence or flow specifications. In general, there is a large
amount of run-time information, which leads to issues regard-
ing how to acquire, store, and analyze it efficiently. Moreover,
dynamic analysis recovers activity relation from the sequence
of operations in system logs. It makes accurate specifications,
but the granularity of the activity in the system log is too small
to give us the so-called big picture of the business process.

In this paper, we propose a new dynamic analysis based
method to recover the big picture of a business process based

on system logs and organizational information, which are
stored for system maintenance and operation. By analyzing
them, when they are acquired in system operation, we can
accurately recover an adequate granular abstracted business
process.

II. RelatedWork

The business model mining techniques are a popular set
of methods for business process recovery [10]. They can
recover business process models from sequences of event,
method calls in execution traces, and operations in system
logs. The recovered business process model represents all
system behavior recorded in system logs and can be used for
performance analysis and comprehension of detailed behavior.
However, the operation-level model is not fit for observing the
big picture of the business process because it consists from a
large number of operations and complex relationships among
them, when we discuss about them with end users who have
less knowledge about detail of computer systems.

To solve this problem, some methods to classify or cluster
log entries have been proposed. Weerdt et al. proposed Acti-
TraC to cluster mixed-function log entries into separate data
[11]. They used an active learning-inspired clustering approach
to separate the different functions of the log by performing
selective sampling on the basis of the distance and frequency
of occurrence between traces.

Francescomarino et al. proposed a restoration method for
BPMN (Business Process Modeling Notation) models for Web
applications [12]. They defined three structural criteria (loop,
sequence, and alternative) and a logical criterion (page) for
clustering business activities into abstracted activities. They
use logs and information about the relations among web pages
and activities to cluster partial part of a business process.
Weerdt also proposed measures for evaluating the discovered
process models [13], [14].

However, real business systems are used in parallel for
users to collaboratively do their work. The business process
model must describe this collaboration. We propose a method
to recover an abstract business process by using system logs
and the organizational information of the operators using an
existing legacy system. It can recover multi-user collaborative
activities at an adequate abstracted level.

978-1-5090-5501-2/17 c© 2017 IEEE SANER 2017, Klagenfurt, Austria
Industrial Research

Accepted for publication by IEEE. c© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

531



Fig. 1. Sample of system log.

III. Preliminaries

We focused on business application systems as target sys-
tem. They support business activities related to many users
with several roles. Each task of a business case is performed
collaboratively by some users. Such systems process artifacts
from one role to another. A user sometimes has several roles.
Each user belongs to an organization (sales department, stock
administration) depending on the role, and the organization
has a hierarchical structure.

The system log is a record of usage at the time of system
operation. Figure 1 shows an example of information that can
be restored from the system log. It contains the Time stamp,
User ID, Action ID and Case ID for operations. Case ID
shows the artifact that a given operation acted on, for example,
registration number, receipt number, and order number.

Organizational Structure Information consists of knowledge
of users (identified by user IDs), roles, and the parts of
the organizational structure (company, departments, sections,
groups, units, etc). They are usually described by a tree
structure. Each user must belong to one or more organizations
and have some role.

In this paper, we define “business process” as a collection
of actions performed by particular users or organizations
for a purpose. This definition has a high affinity with the
definition of “activity” in the process mining manifesto [15].
By running it with the input information described above, “one
purpose” corresponds to the case ID in the system log, and
“particular users or organizations” corresponds to the user ID
and organizational information. We use this property to recover
highly abstracted business processes.

IV. The ProposedMethod

A. Overview

Figure 2 provides an overview of the proposed method. The
proposed method consists of four steps. The first step is the
role model recovery step that recovers the role structure of ac-
tions from input information, system logs, and organizational
information. The second step is the main actions’ selection
step that selects the most characteristic actions from those
belonging to each activity. The next step is the abstract activity
recovery step that recovers abstract activities named the main
actions. The last step is the flow drawing step that visualizes
the recovered business process using a generic drawing tool.
In the following sections, we introduce some definitions and
provide the details of each step.

Fig. 2. Overview of the proposed method.

B. Basic Definition

We define system log E as an ordered set of log entries e.
Log entry ei ∈ E corresponds to a record of a user operation
on the target system and defined as follows:

e = ⟨e.u ∈ U, e.t ∈ T, e.a ∈ A, e.w ∈ W⟩ (1)

where U = {u1, u2, u3, · · · } is a set of users and T =
{t1, t2, t3, · · · } is a set of time stumps when user operations
are executed on the system. A = {a1, a2, a3, · · · } is a set
of actions corresponding to the type of user operations, and
W = {w1, w2, w3, · · · } is a set of cases (a.k.a work items).

To gather log entries for a case, we can recover a history of
user actions for it. We define the history as process instances
pi = {e|e.w = wi, e ∈ E}.

The activity act ∈ ACT , which is the key element in the
recovered process model, is defined as a set of actions. Our
definition allows us to use the arbitrary combination of actions
as an activity (ACT ⊂ 2A).

C. Step1: Role Model Recovery Step

The outline of this step is as follows:
(1) Extract process instance from system logs and identify
blocks based on the switching points of users

(2) Calculate weight(ai ⇒ a j for all relations R between
actions and filter out relations aiRa j where weight(ai ⇒
aJ) ≤ MINweight. Then extract connected actions with
relation R as roles.

(3) Group roles based on organizational information.
In the rest of this section, we describe the details of each step
with examples.

1) Identifying Blocks: In the first step of recovering the
structure of a business process, we find candidates of activities
called ”block” from process instances. In this paper, we focus
on the user role that users perform for a business artifact.
Usually, a business artifact is related to some user roles. We
think that an activity, which is the main element of the business
process, can be recovered through the actions of each user role.

Block bi, j ∈ B is defined as the subset of a process instance
related to a particular user; bi, j = {e|e.u = u j, e ∈ pi}.
Based on this definition, all blocks B can be defined as
B = {bi, j|∀wi ∈ W, ∀u j ∈ U}. Note that a block represents
a series of actions by a user for a case. A user tends to
perform the same actions for cases as a part of the workflow.
In the large business application system described in the last
section, some users have the same role in the workflow to

532



Fig. 3. Example of process instances, block, and role switching points.

perform actions in parallel. For instance, actions in buser1,case1
and buser2,case2 can be identical when they have the same role
in the workflow. However, actions in buser2,case2 and buser2,case3
might be different, since user2 performs different actions for
case2 and case3. If a user has multiple roles, a block for the
user contains several activities.

Figure 3 shows an example of process instances and blocks
for a sample system log in Fig. 1. In this figure, the verti-
cal lane shows process instances, and horizontal lane shows
actions. The rounded rectangles with a broken line represent
blocks. In this case, uKoizumi performed different actions in
c00101, c00104 and uYamada functioned in two roles in case c00105.

2) Extraction of Roles: To cope with variations in actions
in a block, we compute the weighted relation among actions
to identify roles. In this paper, we use lift as weight. li f t is
used to measure the distance between two events in association
rule mining. We define the lift value from action ai to action
a j as follows, where aBlocks(a) is a function to obtain a set
of blocks that have action a, i.e., aBlocks(a) = {b ∈ B|∃e ∈
b, e.a = a)}:

li f t(ai ⇒ a j) =
|aBlocks(ai) ∩ aBlocks(a j)| · |B|
|aBlocks(ai)| · |aBlocks(a j)|

(2)

We pick connected actions related by high lift values for
roles, i.e., a role r is a set of actions which hold ∀ai∃a j ∈ r.
li f t(ai ⇒ a j) > MINweight. It is based on the property whereby
the actions of the same role are prone to be performed by
same user at the same time. The frequencies of actions in
the log have a wide range; hence, we selected a lift value to
reduce the influence of high-frequency actions in clustering.
The algorithm picks a group of actions related by lift value
above the threshold for the role.

Based on the lift value, we can eliminate weak relations,
such as the one between actions performed by a user with
multiple roles and find the roles including variations in the
routine work. For instance, the process instance of c00105
in Fig. 3 has four actions in a block. However, lift value
correspondence between “Request Estimate Approval” and
“Check Approval Request” is low because these actions were
performed by different users in other cases. On the other hand,
lift value correspondence between “Entry Estimate Form” and
“Request Estimate Approval” is high. Thus, “Request Estimate

Fig. 4. Recovered role model of Fig. 3.

Approval” and “Check Approval Request” belong to different
roles, whereas “Entry Estimate Form” and “Request Estimate
Approval” are grouped in a role.

3) Reflecting Organizational Information: To understand
the big picture in the process modeling of a large-scale system,
we need higher-level abstraction. Hence, our method uses not
only user information, but also organizational information,
such as sections, divisions or departments, to recover high level
roles. Each user who performs an action, has organization.
In this step, we group roles into highly abstracted ones
by assigning to them the organization that most frequently
appears in actions in a given the role. That is to say, we recover
relations between an organization and an action from relations
between the organization and the userID by selecting the most
frequent organization to which the users acting given actions
belong. Figure 4 shows result of this step for the example from
Fig. 3.

D. Step2: Main Action Selection Step

To recover the business process from the model of roles,
we find main actions that are characteristic actions. Usually,
users of business applications start their operations from
general actions like “check request,” or “form error.” They
then perform various actions, and finish it by the characteristic
actions like “Approve” or “request approval.”

We focus on actions performed at the end of a
role frequently. We define a function f Rate(a) =

| f Blocks(a)|/|aBlocks(a)| to calculate the rate of the final
appearing blocks defined as set of blocks where the focused
action appears at the end. f Blocks(a) is a function to choose
final appearing blocks for an action a, i.e., f Blocks(a) = {b ∈
aBlocks(a)|∃e0 ∈ b, e0.a = a,∀ek ∈ b e0.t ≥ ek.t)

In this paper, we select the main actions of a given role r
with a function mainAct(r) = {a ∈ r| f Rate(a) ≥ MIN f inal}.
E. Step3: Abstract Activity Recovery Step

In the last section, we described the algorithm to select the
main actions. To recover the abstracted activity, our method
gathers blocks containing each main action, and selects actions
more frequent than the threshold value. We define these groups
of actions as abstracted activities named the main action. In
some cases, one action belonged to more than one abstract
activities or no abstract activities.

F. Step4: Flow Drawing Step

The last step of the method involves drawing a flow diagram
from the recovered information. It generates a frame with

533



Fig. 5. Business process diagram (Operation level).

Fig. 6. Business process diagram (Activity level).

the organization and the abstracted activities, and connects
activities linked by the process instance sequence (Fig. 5 ).
Furthermore, it folds actions in abstract activities to generate
a highly abstracted business process by looking up the main
actions (Fig. 6).

V. Implementation

Figure 7 illustrates a prototype tool we developed. The tool
consisted of four steps described in the last section, and was
called the “log converter”. It converts real system log into a
standard log format like that shown in Fig. 1, and the “process
controller”, controls each step and activates the steps. We
implemented the “flow drawing step” with a macro-program
of a commercial flow-drawing application.

VI. Case Study

A. Target System

We selected an business application system that supported
preliminary petitions, adjustments and approval for business
trips. The system consisted of five subsystems related to five
business processes (BP.A, BP.B, ... , BP.E). The roles of
the users were: employee, who wanted to go on a business
trip; supervisor, who approved the employee’s petition for the
business trip; an accountant, who considered the budget. These
users used the system via a Web browser.

We obtained an actual system log (personal data was
masked) and organizational information concerning users for
this case study. The system log was 6.22M bytes, and included
actual usage data for three months. The log consisted of 18,064
log entries related to 3,969 users, 59 actions, and 9,946 cases.

B. Evaluation Method

To evaluate the validity of the recovered abstract activities,
a senior developer who knew the system well, checked the
validity of the abstraction and the transitions between abstract

Fig. 7. Outline of our prototype system.

TABLE I
Evaluation of recovered abstract activities

Business Correct Incorrect
Process transitions transitions Precision
BP.A 15 0 100%
BP.B 15 2 88%
BP.C 6 3 67%
BP.D 7 2 78%
BP.E 6 2 75%
Total 49 9 84%

activities. We also evaluated the performance of our main
action selection method. We choose BP.A as a target business
processes and defined the conventional method, which selected
the most frequent action in an activity, as the base line. We
compared our proposed method with the conventional method
in terms of precision and recall of selecting main actions.

C. Evaluation Result

1) Validity of Recovered Abstract Activities: We recovered
an abstract activity of the target system using the proposed
method. We asked a senor developer of the target system to
evaluate the abstract activity flow using two points of view, the
qualitative validity of abstraction and the quantitative validity
of transitions between abstract activities. From the first point
of view, the developer checked recovered abstract activities
to look for missing or unnecessary activities, and concluded
that it was satisfactory. Table I shows the result from the
second point of view. The precision of our method was 67%-
100% (average 84%). Incorrect transitions consisted of related
common actions over MINli f t.

Figure 8 and Figure 9 are screen shots of the recovered
flow of actions and the abstracted activity flow of BP.A,
respectively. Our method successively recovered activities and
reduced the size of elements in the flow diagram: 59 actions
into seven abstract activities in this case. For example, the
actions “display detail form,” “save form,” “update hotel
information,” “request domestic trip approval,” and so on,
abstracted the activity “request domestic trip approval.”

2) Validity of Recovered Main Actions: Table II shows
the evaluation of the selection the main action in BP.A. It
compares our method (fRate) and the simple method, the
selection of the most frequent action(Frequency). Our method
with Min f inal = 75% yielded the best precision and recall
scores. When Min f inal was under 75%, precision was low
because intermediate actions, like “delete item” or “search
case,” were selected as main actions. When Min f inal was 90%,

534



TABLE II
Evaluation of main action selection

Fig. 8. Recovered business process (before abstraction).

recall was low because important actions were eliminated.
In all cases, the proposed method outperformed the baseline
method.

D. Discussion

In this case study, the proposed method was effective in
recovering abstract activities using system log. By separating
process instances into blocks and grouping them according to
lift values, we recovered valid abstract activities. Furthermore,
by using organizational information, we recovered higher-level
abstracted activities. On the contrary, a few frequent actions
led to incorrect results in the evaluation of transitions between
abstract activities. There is hence room for improvement.

And by focusing on the f Rate, the main action of abstracted
activity is recovered with high precision and recall. We should
do more case studies to realize the best threshold of f Rate. For
good result, our method requires an entire lot of log entries.
Most of business applications have large size logs.

VII. Conclusion

To understand the specifications of legacy business systems,
we proposed in this study a method to recover business
processes from system log and organizational information.
Our method is intended for business processes performed by
a plurality of users. It focuses on change points of roles,

Fig. 9. Recorvered business process (after abstraction).

categorizes actions into abstracted activities, and selects the
main action of the each activity.

In our case study involving a real system, we recovered
seven abstracted activities from 57 actions, and selected the
main action of each activity with high precision and recall.

References
[1] G. C. Murphy, D. Notkin, and K. Sullivan, “Software reflection models:

Bridging the gap between source and high-level models,” in Proc.
FSE’95, pp. 18–28.

[2] A. Rountev and B. H. Connell, “Object naming analysis for reverse-
engineered sequence,” in Proc. ICSE’05, pp. 254–263.

[3] L. A. P. Rabelo, A. F. do Prado, W. L. de Souza, and L. F. Pires,
“An approach to business process recovery from source code,” in Proc.
ITNG’15, pp. 361–366.

[4] A. Ghose, G. Koliadis, and A. Chueng., “Process discovery from model
and text artifacts,” in Proc. SOPOSE’07, pp. 167–174.

[5] B. Paradauskas and A. Laurikaitis., “Business knowledge extraction
from legacy information systems,” J. Info. Tech. and Control, vol. 35,
no. 3, pp. 214–221, 2006.

[6] Y. Zou, T. C. Lau, K. Knotogiannis, T. Tong, and R. MeKegney, “Model
driven business process recovery,” in Proc. WCRE’04, pp. 224–233.

[7] C. D. Francescomarino, A. Marchetto, and P. Tonella, “Cluster-based
modularization of processes recovered from Web,” J. Softw.: Evol. and
Proc., vol. 25, no. 2, pp. 113–138, 2010.

[8] R. Pérez-Castillo, “Marble: Modernization approach for recovering
business processes from legacy information systems,” in Proc. ICSM’13,
pp. 671–676.

[9] M. Leemans and W. van der Aalst, “Process mining in software systems:
Discovering real-life business transactions and process models from
distributed systems,” in Proc. MODELS’16, pp. 44–53.

[10] W. van der Aalst, Process Mining - Data Science in Action. Springer,
2016.

[11] J. D. Weerdt, S. vanden Broucke, J. Vanthienen, and B. Baesens, “Active
trace clustering for improved process discovery,” IEEE TKDE, vol. 25,
no. 12, pp. 2708–2720, 2013.

[12] C. D. Francescomarino, A. Marchetto, and P. Tonella, “Reverse engi-
neering of business processes,” in Proc. CSMR’09, pp. 139–148.

[13] J. D. Weerdt, M. D. Backer, J. Vanthienen, and B. Baesens, “A critical
evaluation study of model-log metrics in process discovery,” in Proc.
BPM’10, pp. 158–169.

[14] ——, “A robust f-measure for evaluating discovered process models,”
in Proc. CIDM’11, pp. 148–155.

[15] W. van der Aalst et al., “Process mining manifest,” in Proc. BPM 2011,
2012, pp. 169–194.

535


