
A CHANGE GUIDE METHOD BASED ON DEVELOPERS’ INTERACTION
AND PAST RECOMMENDATION

Akihiro Yamamori and Takashi Kobayashi
Dept. of Computer Science, Grad. School of Information Sci. & Eng., Tokyo Institute of Technology

2–12–1, Ookayama, Meguro-Ku, Tokyo, 152–8552 Japan
email: yamamori@sa.cs.titech.ac.jp, tkobaya@cs.titech.ac.jp

ABSTRACT
In this paper, we propose a change guide method based

on the past developers’ activity that consists of read and
write access records of artifacts. In our proposed method,
we calculate candidates of next change recommendation
considering the history of its recommendations. We
define “cumulative likelihood” to enable the method to
recommend the appropriate candidates when a change
propagates more than one code elements. A case study
using interaction history logs from 15 participants showed
the improvement of the accuracy of the method-level
change recommendation.

KEY WORDS
software maintenance, change guide, interaction history,
software repository mining

1 Introduction

Software is continuously changed for various reasons such
as adding new features and fixing bugs after release. It
has been a serious problem to find a complete set of
code fragments that have to be changed while detecting
complex dependencies in the program. To improve the
quality of the product, it is important to detect all of the
source code that have to be changed during maintenance,
whose technique is called ”change guide” [1][2]. Static
analysis based approaches were proposed to detect the
scope of change effects [3]. However, these approaches
involve the analysis of many dependencies, not all of which
cause change propagation [4]. Further, some of these
dependencies cannot be found by static analysis [5].

To overcome the limitations of change guide methods
that use static analysis, studies focusing on developers’ past
process information were performed to guide developers
during maintenance [6, 1, 7]. These methods estimate
the propagation of changes from the developers’ past
change history on the assumption that the behavior of some
developers is similar to that of other developers in the past.

Most of these studies involving developer’s past
activity used a version control system. It preserves
changes between commits. However, it lacks information
of the precise order of changes between commits and
the entities that were looked by and not changed by the
developer. Instead of the version control system, some

recent studies used a developer’s interaction data including
the developer’s interaction with integrated development
environments (IDE), Web browsers, and other kinds of
development tools [8].

To improve the efficiency of the change
recommendation process, we previously proposed change
guide method using this interaction history including
fine-grained information about changes and references to
the source code [9]. This study used the reference to an
entity between changing entities as ‘change context’ and
introduced the Change Guide Graph (CGG) that is created
by learning developers’ past interaction histories. It has
implicitly made an assumption that the entity that should
be changed in the developer’s working context can be
determined as only one. However, changes of a program
often propagate two or more entities at the same time in
the actual software development. In this case, this method
correctly guides an entity to change, then fails to guide
other entities because it will recommend different entities
based on the working context that has been changed with
the previous change.

In this paper, to overcome the limitation that only one
entity of change guide can be used at once, we propose
a method that accumulates the likelihoods calculated from
the past changes, along with the likelihood calculated from
the latest change. We made an assumption that the change
candidates displayed recently are also useful as same as the
recommendation displayed now, and this method aims to
improve the effectiveness of change guide by accumulating
likelihoods of past recommendation.

We evaluate our proposed method by the experiment
with the interaction date of 15 persons. The experiment
shows that accumulating likelihoods is effective in the
method-level change recommendation and we should
accumulate up to fifth latest likelihoods. It also shows
the improvement compared to the previous method by
the nDCG (normalized Discounted Cumulated Gain)
value which is improved in 34.2% in the method-level
recommendation.

The remainder of this paper is organized as follows:
Section 2 discusses related works. Section 3 introduces
our previous research that proposed a change guide method
based on the interaction history. Section 4 points out
the limitation of our previous research and propose a
change guide method using cumulative likelihood. Section

Proceedings of the 14th IASTED International Conference

February 15 - 16, 2016 Innsbruck, Austria
Software Engineering (SE 2016)

DOI: 10.2316/P.2016.835-012 281

5 evaluates our method and discusses the occasions
that our proposed method can improve the accuracy of
recommendation. Section 6 closes with conclusion and
consequences.

2 Related Works

2.1 Change Guide Using Static Analysis of Source
Code

The studies using the static analysis of source code were
performed to detect the range that changes propagate
[3]. By analyzing the source code, we can obtain
the dependencies such as method invocations, class
inheritances, and field references.

However, there are too many such dependencies in
a software and not all of them are involved in change
propagation. Geipel et al. [4] were reported that half or
more of the dependencies between classes are not involved
in the change propagation and a fraction of dependencies
causes most of the change propagation. Canfora et al. [5]
were also reported that there are some dependencies that
the static analysis cannot search. Therefore, the difficulty
lies in the change guide using only the source code’s
dependencies.

2.2 Methods of Mining Revision History

To overcome the limitation of the change guide method
using static analysis, other studies were performed that
uses the history of the changes to the software artifacts and
guides the necessary changes in the maintenance phase.

Gall et al. [6] proposed a method that analyzes the
revision history stored by the version control system such
as CVS and find the logical coupling, the relation of the
files that are likely to be changed together.

Zimmermann et al. implemented a tool, eROSE [1]
that can detect such logical coupling in method granularity.
When the developer changes some methods, it suggests the
methods that have to be changed together. Kagdi et al.
proposed another tool sqminer [7] that virtually calculates
the time sequence of the changes, which the concept of
logical coupling ignores, and improves the accuracy of the
change guide. Gerard et al. [5] applied Granger causality
test and extracted association rules from revision history of
version control system, which can predict a set of change
couplings complementary.

These existing studies use the revision history of the
version control system, such as CVS, Subversion, and Git.
However, there are two limitations. First, the information
of changes of artifacts is recorded only when the developer
commits, so the information of precise time that change
occurred are not recorded. Second, the revision history
only stores the changes, so the information of artifacts
referenced by the developer is not recorded, which can
be the source of the change guide as well as the changed
artifacts.

Table 1. List of tools that can output the fine-grained
interaction history

tool name interaction kind
Mylyn [11] open files, propagate folders,

access to files, classes, methods
PLOG [9] access to files, changed or not，

method name at the cursor,
content of stdout, stderr.

FLUORITE insertion and deletion to files,
[12] line of code, execution, etc.
CodingTracker text editing, file editing, refactoring,
[13][14] compare editors, interact with VCS,

JUnit test runs, start-up, options, etc.
DFLOW [15] viewing and editing code,

software inspection etc.
IDE++ [16] key strokes with key name,

execution, refactoring, save, etc.

2.3 Methods of Mining Interaction History

To make use of the finer-grained developers’ activity
history compared with the history from the version control
system, methods of storing and mining interaction history
were proposed [10]. The concept of interaction history
is that storing not only the changes of the files, which
the version control system stores, but also the developer’s
interactions including developer’s choices and references,
and it also stores the time series of the interactions.

There are several tools for recording the interaction
history. Table 1 shows a list of tools that capture and output
the interaction history.

Kersten et al. made an Eclipse plug-in, “Mylar”
(currently renamed “Mylyn”) [11] to show summarized
artifacts to developers through the IDE. Mylyn can
automatically record and display a developer’s interaction
history. These histories have been recorded in the
Mylyn development project since 2007 and are available
on Bugzilla1, an issue tracking system. We previously
developed PLOG [9] which records the time and time series
of developers’ code references and editing, and also records
runtime exceptions raised at runtime. Yoon et al. developed
FLUORITE [12] which records the insertions and deletions
to files, the line of code and the number of nodes of the
abstract syntax tree. It visualizes transitions of those and
developers can use this to see how the software is growing.
Negara et al. developed an interaction history recording
tool, CodingTracker [13]. It records 38 different kinds
of code evolution events including Eclipse’s refactoring
interaction. They analyzed the interaction history recorded
by CodingTracker and discovered frequent code change
patterns in [14]. Minelli et al. developed an interaction
history recording tool, DFLOW [15], which is specialized
in Pharo, an IDE for Smalltalk development. It records

1https://bugs.eclipse.org/bugs/

282

33 kinds of detailed events including inspecting interaction
which is peculiar to Smalltalk. They analyzed the
interaction history recorded by DFLOW and PLOG to
clarify developer’s comprehension steps in [15]. Gu et
al. developed IDE++ [16], which records 44 kinds of
interaction events in very fine granularity, such as key
strokes.

Zou et al. defined interaction coupling as the relation
between files that are frequently reference-switched with
each other [17] to characterize the maintenance tasks.
Robbes et al. also proposed similar logical coupling in
the fine-grained interaction history [18]. They evaluated
various change prediction methods and showed that
predictions based on the most recently changed files are the
most accurate [19]. Maalej et al. recorded the interaction
histories of various development tools and used these to
recommend the development tool that the user should use
next [20]. Roehm et al. collected code change, Web search,
and compile error histories, and produced a representation
of the steps taken by a developer when resolving problems
by applying the hidden Malkov model [21].

We previously proposed a change guide method using
the interaction history that contains changes and references
to the artifacts [9]. We used the references between two
changes as the context of the changes (See Section 3 for
details).

3 Previous Research: Change Guide Graph

In this paper, the interaction event is defined as
developers’ changing or referring activity to software
artifacts such as source code elements, documents. In the
file-level, an interaction event includes information of the
period between opening and closing the file. In the method-
level, it includes the period between the cursor entering and
leaving the method definition.

We previously proposed a method for the change
guide [9], which is performed in three steps

1. Capture interaction history (Section 3.1)

2. Generate the Change Guide Graph (Section 3.2)

3. Predict the next change according to the Change
Guide Graph (Section 3.3)

3.1 Capture Interaction History

Using PLOG [9], an Eclipse plug-in, we collect developer’s
interaction events. The interaction events contain following
four kinds of information. In this paper, we call the
chronologically-ordered sequence of interaction events
interaction history.
name The name of the interacted software artifact

(eg file or method name)
start The starting time of interaction
end The ending time of interaction
type Whether “Change” or “Reference”

A	
B	

C	

…	

B,D
	

D,E
	

E	

C,F	 B,F	

A,F	 D	

Figure 1. An example of CGG

3.2 Generate the Change Guide Graph

The Change Guide Graph (CGG) is a prediction model
for change propagation generated by mining interaction
histories. The Change Guide Graph is described as a
directed graph that its nodes and edges stand for the
software artifacts and the context of change propagation,
respectively.

The CGG is generated in the following three steps:

1. Cleansing the interaction history

2. Generate “attributed change sequence (ACS)” from
the interaction history

3. Generate CGG from the ACS

The detailed procedure of step 1 is described in [9].
In step 2, we generated an Attributed Change

Sequence. ACS is described as a sequence of changes with
attributes that described as a vector of scores of views. For
example, if the developer views artifacts A and B before
he/she changes an artifact C, ACS will be a change C
with an attribute vector of A and B. See [9] for further
explanation about generating ACS and scoring views.

In step 3, we generated a Change Guide Graph, a
directed graph of which nodes represent changes and edges
represent the context of two changes. Figure 1 is an
example of CGG. Each of edges has one or more attributes
of files with their scores. We generated the graph by
iterating following steps:

1. Pick up every consecutive two changes from the ACS.

2. Append the attribute score vector of the earlier change
to the edge that directs from the earlier change to the
later change. If the edge does not exist, we create an
edge and set the attribute score vector of the earlier
change.

From these steps, we could store the information of
change propagation with the contexts of views from the
interaction history.

283

A	
B	

C	CGG’s	
edge	

Recommenda1on	
B,	 C	

Recommenda1on	
empty	

developer’s	
change	
process	

Figure 2. There is no edge B → C and this CGG cannot
recommend changing C after changing A and B

3.3 Predict the next change according to the Change
Guide Graph

When a change event c occurs, we calculated the likelihood
lhe(c) for each edge e ∈ E′ by following.

lhe(c) =
∑

pe∈Pe

{(1−α)+α(conMatch(pe, pc))}

Where E′ is a set of edges directed from a changed node in
the CGG. Pe is the set of contexts of the edge e and pc is the
context of the change. conMatch(pe, pc) represents the
matching strength of the edge context and the latest change
context, which is calculated by a dot product of two vectors
pe, pc of context information.

The parameter α represents the degree of concerning
the context information. If α = 0, the lhe() is independent
to contextMatch(). The lhe() is equal to the number of
contexts of the edge. If α = 1, the lhe() is fully dependent
on contextMatch(). In this case, the lhe() is zero if there
is no common context between the edge and the change.

Finally, we guided that the terminal nodes of the
edges are the artifacts which should probably be changed.
The recommended artifacts were arranged in descending
order of the lhe() of its edge.

3.4 Limitation of the previous method

The previous method assumed that some changes will
propagate only one artifact and calculates the likelihood
based on the latest one change event. However, changes
usually propagate more than one artifact and developers
want to change these artifacts.

Assume the source code that change of artifact A
may propagate either artifacts B and C, and [A, B] and
[A, C] were changed in this order individually in the past
maintenance tasks. The edges A → B and A → C are
generated in the CGG in the previous method. The edges
B → C and C → B are not generated based on the past
maintenance tasks (Figure 2). The change recommendation
after changing artifact A is artifacts B and C. In some cases,
developers should change both B and C in this situation.
However, the change recommendation will not contain C

&	

A	
B	

C	CGG’s	
edge	

Recommenda2on	
B,	 C	

Recommenda2on	
B,	 C	

Recommenda2on	
empty	

developer’s	
change	
process	

Figure 3. CGG can recommend C after changing A and
B because the recommendation after changing A remains
after changing B

after the developer changes B because there is no edge
B → C in the CGG. It is the same if the developer changes
C first because there is no edge C → B in the CGG.

4 Change Recommendation Based on
Cumulative Likelihood

To overcome the limitation of the previous method, we
propose a method that can cope with the situation that a
change propagates more than one artifact.

The method of the previous method searches only one
node of the artifact that has just changed from CGG and
explores the edges starting from this node. This causes a
limitation mentioned above. Therefore, we use not only
the likelihood based on the latest change event but also
the change events of second latest and earlier, and we
sum up the likelihoods of the edges and make the change
recommendation based on the summed likelihood. We call
this likelihood “cumulative likelihood”.

We use the example described in Section 3.4 again.
Our extension does not change CGG from the previous
method (Figure 3). When the developer changes artifacts A
and B in this order, our method will recommend C because
it uses not only the likelihood calculated by the change
event B (the latest change) but also by the change event
A (the second latest change). The cumulation of these
likelihoods enables to recommend C as the next change
candidate.

Considering cumulating past likelihoods, the
likelihood calculated from the latest change event is the
most important for the change recommendation. The
earlier a change event is, the likelihood calculated from the
change event is less important. In this study, we cumulate
the likelihoods with a weight.

We define a function for calculating the cumulative
likelihood for each artifact (candidate to change) v by
following.

CLv(c) = lhv(c) +
n∑

i=1

weight(i) ∗ lhv(ci)

284

Table 2. Summary of the tasks

Participant Summary of assigned task
A renovate Piranha Plant (spits fire)
B add an item (reverse the arrow key)
C change Fire Flower to Hummer
D change Goomba to Spiked Goomba
E add an item (Raccoon Mario)
F add an item (10 coin block)
G add an item (random block)
H change Fire Flower to Ice Flower
I change Fire Flower to Bob-omb
J renovate the behavior of Koopa Troopa
K add an item (1-Up Mushroom)
L add an item (Poison Mushroom)
M add a new action to Mario

(Able to punch enemies)
N renovate the behavior of Koopa Paratroopa
O add an item (Star)

Where lhv(c) = lhe(c) if e stretches from c to v. ci is
the ith latest change. n is the number of changes that are
cumulated 2. weight(i) is the weight for the likelihood of
the change event ci i.e. lhv(ci) which is discussed in the
case study section. Note that we cumulate the past lhv(c),
not the CLv(c), so any likelihoods are not cumulated twice
even when n > 2.

5 Case Study

5.1 Target Software and Interaction History

For collecting the interaction history, we used “PLOG”
[9] that is a tool for collecting and storing the interaction
history. PLOG was implemented as a plug-in of Eclipse, an
Integrated Development Environment for Java. We selected
a Java clone implementation of “Super Mario Bros.”3 as a
target software for collecting the interaction history, which
has 48 classes and 7000 lines of codes. We hired 15
students as case study participants and assigned a different
task of adding a new feature for each participant (Table 2).

We forced participants to use “PLOG” and we
obtained 15 sessions of interaction histories in both file-
level and method-level. Table 3 shows the length (the
number of changes) of the attributed change sequence that
is generated from obtained interaction history (See Section
3.2).

5.2 Evaluation Metrics

We selected nDCG (normalized Discounted Cumulative
Gain) [22] as an evaluation metric for the accuracy of

2The change events are represented as {cn, cn−1, · · · , c1, c} when
arranging events in chronological order

3https://mojang.com/notch/mario/release.zip

Table 3. Summary of the length (the number of changes)
of obtained attributed change sequence (ACS)

Participant Length of the change sequence
file-level method-level

A 23 37
B 19 34
C 7 20
D 60 75
E 32 91
F 19 34
G 3 33
H 13 21
I 40 81
J 7 12
K 9 11
L 11 19
M 150 306
N 36 71
O 13 49

our method. Robbes et al. [19] used it for evaluating
their change guide method. nDCG is originally designed
to measure the performance of a recommendation system
based on the graded relevance of the recommended entities.
It varies from 0.0 to 1.0, with 1.0 representing the ideal
ranking of the entities.

In this case study, we calculated nDCG iteratively
for each change recommendation and treated the arithmetic
average of the nDCG as the evaluation metrics for this case
study. We also used Wilcoxon signed-rank test to confirm
that the variation of nDCG between using the cumulative
likelihood and using the likelihood with no cumulation was
statistically significant.

5.3 Parameters

We investigated the impact of the parameters, the weight
of the ith latest likelihood weight(i) and the number of
cumulating change events n. We varied n from 1 to 9. We
selected three fixed values and two functions decreasing as
old for weight(i). For every weight(i), weight(0) = 1.
weight(i)s for i > 0 are defined as follows.

• weight(i) = {1, 0.5, 0.2} (fixed values)

• weight(i) = γi (exponential function)

• weight(i) = δ − ϵi (linear function)

We evaluated with the fixed values first. Then we optimized
the parameters γ, δ, and ϵ. As a result, we selected 0.7, 0.5,
0.05 for the parameters γ, δ, ϵ in the method-level and 0.2,
0.2, 0.02 in the file-level, respectively.

We used 0.9 for α, a parameter defined in the previous
method (See Section 3.3).

285

0.45	

0.5	

0.55	

0.6	

0.65	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	

nD
CG
	

#	 of	 cumulated	 change	 events（ｎ）	

weight(i)=	 1	
weight(i)=	 0.5	
weight(i)=	 0.2	
weight(i)=	 0.7^i	
weight(i)=	 0.5-‐0.05i	

Figure 4. Method-level nDCG when changing n and
weight(i)

0.66	

0.68	

0.7	

0.72	

0.74	

0.76	

0.78	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	

nD
CG
	

#	 of	 cumulated	 change	 event（ｎ）	

weight(i)=	 1	 weight(i)=	 0.5	
weight(i)=	 0.2	 weight(i)=	 0.2^i	
weight(i)=	 0.2-‐0.02i	

Figure 5. File-level nDCG when changing n and weight(i)

5.4 Result

Figures 4 and 5 show nDCGs when changing n and
weight(i).

In the method-level change recommendation, the
parameters n = 5, weight(i) = 0.5 − 0.05i marked the
maximum nDCG (0.635), which is increased by 34.2%
from the parameter n = 0 (nDCG = 0.473). The
p-value of the Wilcoxon signed-rank test was 0.006,
which confirms that the improvement of method-level
recommendation was statistically significant under the
confidence interval of 0.05.

On the other hand, improvement of the file-level
change recommendation was not so much as method-
level. In file-level, the parameters n = 9, weight(i) =
0.2 − 0.02i marked the maximum nDCG (0.745), but it
is increased by only 4.9% from the parameter n = 0.
There are no parameters that produce significantly different
nDCG from the nDCG of n = 0, which means that nDCG
is not significantly increased or decreased.

file method

se
co
nd

Figure 6. Time distribution of changing files and methods

5.5 Discussion

According to Figure 4, nDCG increased monotonically
in the section of 0 ≤ n ≤ 2 in the method-level
with any weight(i) functions. Therefore, cumulating
two likelihoods to the latest likelihood improved the
accuracy of the change recommendation in the method-
level, regardless of weight(i).

We used three constant weights and two decreasing
weights and decreasing weights marked better nDCG than
constant weights. Therefore, the older the likelihood is, it
is necessary to decrease the weight.

In contrast, we could not find significant improvement
in the file-level change recommendation. This is because
methods are finer-grained than files and developers
tend to switch the methods more frequently than the
files. Figure 6 shows the box plot of the consumption
time of change events in both granularity. The
medians of consumption time were 96.6 and 33.6
seconds in the file-level and method-level recommendation,
respectively. So the recommendation shown previously
was still worthwhile after changing other methods so that
cumulating likelihoods was effective in the method-level
change recommendation.

We investigated why nDCG of our method was
increased from the previous method in the method-
level. We found three cases of interaction where the
cumulative likelihood improved the accuracy of change
recommendation.

Case 1: Change propagates two or more methods An
interaction history of certain developer has the change
events recorded as follows:

1 Fireball#move()

2 Sparkle#move()

3 Sparkle#Sparkle()

4 Fireball#move(float x, float y)

286

This sequence indicates that the developer changed
Sparkle class after changing Fireball#move() method
and then he returned to the Fireball#move(float x,

float y), which is located in the same file as the
first change event. At this time, the recommendation
of the previous method could predict the 4th method
(Fireball#move()) to change after the 1st method
(Fireball#move(float x, float y)) was changed
and it could not predict other valuable changes. Since it
does not keep the change recommendation after the next
change happens, it could not predict the 4th change event
after the 3rd change event happened.

Our proposed method overcame this limitation. It
cumulated the likelihoods of recommendation after the 1st,
2nd, and 3rd change events and predict the 4th change event
with this cumulated likelihood. It enabled to predict the
4th change event as the most likely to change after the 3rd
change event.

Case 2: Changes of 2 or more methods propagate the
same method An interaction history of certain developer
has the change events recorded as follows:

1 Fireball#move()

2 Fireball#move(float x,float y)

3 Fireball#Fireball(LevelScene level, float x, float
y, int facing)

The previous method predicted the 3rd change event,
Fireball#Fireball(LevelScene level, float

x, float y, int facing), as the 3rd most
likely method to change after the 2nd change event,
Fireball#move(float x, float y). It also
predicted the 3rd change event as the 3rd most likely
method to change even after the 1st change event,
Fireball#move().

Our proposed method was effective in this case
because it cumulated the likelihoods of 1st and 2nd change
events and it can predict the 3rd change event in higher
likelihood than only the likelihood of 2nd change event.

Case 3: Changes of method Signatures An interaction
history of certain developer has the change events recorded
as follows:

1 FireEnemy#FireEnemy(LevelScene level; int x, int y)

2 FireEnemy#FireEnemy(LevelScene level; int x, int y,

int a)

3 FireEnemy#FireEnemy(LevelScene level; int x, int y,

int a, int b)

4 FireEnemy#move()

These were recorded because the arguments of the method
FireEnemy#fireEnemy() have been changed twice and
the previous method and our proposed method dealt with
these three change event separately. Our recommendation
engine could not track the signature changes and could not
treat these methods as the same one.

The previous method could not recommend the 4th
change event, FireEnemy#move(), after the 3rd change

event even though it could after the 1st change event. On
the other hand, our proposed method could recommend
the 4th change event after the 3rd change event because
it cumulated the likelihoods from 1st to 3rd. Our proposed
method improved the accuracy in this case compared with
the previous method.

5.6 Threats to Validity

5.6.1 Internal Validity

The interaction histories we used in the case study were
those collected without change guide to the participants of
the experiment. If the participants use our change guide
method during development, they can reach appropriate
artifact to change faster and the interaction histories differ
from those without the guide. We should perform further
case study by collecting interaction history recorded with
our change guide method.

The participants probably performed the tasks with
mistakenly interacting to the artifacts. We could not filter
out such interaction events in the interaction histories. We
dealt with the interaction events without distinguishing the
proper interaction and the wrong interaction.

The tool, PLOG, can not track the signature changes
and artifact deletions. Therefore, if the developer changes
the signatures or deletes artifacts, our recommendation
engine suggests the artifacts that have already been
changed or deleted, which causes decreasing of the
accuracy. And it also causes increasing of the accuracy as
described in Section 5.5, Case 3.

5.6.2 External Validity

We used the interaction histories of 15 developers in the
same development projects. We have to gather various type
of interaction histories to generalize our results.

Since our approach, a change guide method based
on fine-grained interaction histories, was done for the first
time, we compared our result with our previous study as
the baseline. We might have to compare with other type
methods.

5.6.3 Construct Validity

We used the non-parametric Wilcoxon signed-rank test to
assess whether the nDCG of the change recommendation
was improved using cumulative likelihood. This is
appropriate because we have no assertion about the
normality of the data.

6 Conclusion

Our previous method of change guide could not deal with
the situation when a change propagates more than one
code element. We defined the cumulative likelihood to

287

overcome this limitation. We performed case study using
15 participants of interaction history logs and revealed that
the cumulative likelihood could improve the accuracy of
the change guide in the method-level.

To apply our method to the actual development scene,
we are now planning to implement a tool for suggesting
the candidate to change next to the developer as an Eclipse
plug-in. It can capture the developer’s interaction history,
learn it just-in-time, and calculate the candidates of next
change every time the developer changes to the code, using
our proposed method. It can also output the interaction
history as a log file, which can be used in the further
research.

Acknowledgment

This work is partially supported by the Grant-in-Aid
for Scientific Research of MEXT Japan (#24300006,
#25730037, #26280021).

References

[1] T. Zimmermann, A. Zeller, P. Weissgerber, and
S. Diehl, “Mining version histories to guide software
changes,” Proc. ICSE, vol. 31, no. 6, pp. 429–445,
2005.

[2] L. Hattori, G. dos Santos Jr, F. Cardoso, and
M. Sampaio, “Mining software repositories for
software change impact analysis: a case study,” in
Proc. SBBD, 2008, pp. 210–223.

[3] L. Briand, J. Wust, and H. Lounis, “Using coupling
measurement for impact analysis in object-oriented
systems,” in Proc. ICSM, 1999, pp. 475–482.

[4] M. M. Geipel and F. Schweitzer, “Software change
dynamics: Evidence from 35 java projects,” in Proc.
ESEC/FSE, 2009, pp. 269–272.

[5] G. Canfora, M. Ceccarelli, L. Cerulo, and
M. Di Penta, “Using multivariate time series and
association rules to detect logical change coupling:
An empirical study,” in Proc. ICSM, 2010, pp. 1–10.

[6] H. Gall, K. Hajek, and M. Jazayeri, “Detection of
logical coupling based on product release history,” in
Proc. ICSM, 1998, pp. 190–198.

[7] H. Kagdi, S. Yusuf, and J. I. Maletic, “Mining
sequences of changed-files from version histories,” in
Proc. MSR, 2006, pp. 47–53.

[8] W. Maalej, T. Fritz, and R. Robbes, “Collecting
and processing interaction data for recommendation
systems,” in Recommendation Systems in Software
Engineering, M. P. Robillard, W. Maalej, R. J.
Walker, and T. Zimmermann, Eds. Springer Berlin
Heidelberg, 2014, pp. 173–197.

[9] T. Kobayashi, N. Kato, and K. Agusa, “Interaction
histories mining for software change guide,” in Proc.
RSSE, 2012, pp. 73–77.

[10] W. C. Hill, J. D. Hollan, D. Wroblewski, and
T. McCandless, “Edit wear and read wear,” in Proc.
CHI, 1992, pp. 3–9.

[11] M. Kersten and G. C. Murphy, “Mylar: a degree-of-
interest model for ides,” in Proc. AOSD, 2005, pp.
159–168.

[12] Y. Yoon and B. A. Myers, “Capturing and analyzing
low-level events from the code editor,” in Proc.
PLATEAU, 2011, pp. 25–30.

[13] S. Negara, M. Vakilian, N. Chen, R. E. Johnson,
and D. Dig, “Is it dangerous to use version control
histories to study source code evolution?” in Proc.
ECOOP, 2012, pp. 79–103.

[14] S. Negara, M. Codoban, D. Dig, and R. E.
Johnson, “Mining fine-grained code changes to detect
unknown change patterns,” in Proc. ICSE, 2014, pp.
803–813.

[15] R. Minelli, A. Mocci, M. Lanza, and T. Kobayashi,
“Quantifying program comprehension with
interaction data,” in Proc. QSIC, 2014, pp. 276
– 285.

[16] Z. Gu, D. Schleck, E. T. Barr, and Z. Su, “Capturing
and exploiting ide interactions,” in Proc. Onward!,
2014, pp. 83–94.

[17] L. Zou, M. Godfrey, and A. Hassan, “Detecting
interaction coupling from task interaction histories,”
in Proc. ICPC, 2007, pp. 135–144.

[18] R. Robbes, D. Pollet, and M. Lanza, “Logical
coupling based on fine-grained change information,”
in Proceedings of the 15th Working Conference on
Reverse Engineering, 2008, pp. 42–46.

[19] ——, “Replaying ide interactions to evaluate and
improve change prediction approaches,” in Proc.
MSR, 2010, pp. 161–170.

[20] W. Maalej and A. Sahm, “Assisting engineers in
switching artifacts by using task semantic and
interaction history,” in Proc. RSSE, 2010, pp. 59–63.

[21] T. Roehm and W. Maalej, “Automatically detecting
developer activities and problems in software
development work,” in Proc. ICSE, 2012, pp. 1261–
1264.

[22] K. Järvelin and J. Kekäläinen, “Cumulated gain-based
evaluation of ir techniques,” ACM Trans. Inf. Syst.,
vol. 20, no. 4, pp. 422–446, Oct. 2002.

288

