
Toward Interaction-Based Evaluation of
Visualization Approaches to Comprehending

Program Behavior
Lyu Kaixie, Kunihiro Noda, and Takashi Kobayashi

School of Computing, Tokyo Institute of Technology, Japan
{lvkaixie@sa., knhr@sa., tkobaya@}cs.titech.ac.jp

Abstract—Reverse-engineered sequence diagrams are promis-
ing tools to comprehend the runtime behavior of object-oriented
programs. To improve the readability and understandability of
massive-scale sequence diagrams, various techniques for effec-
tively exploring or compressing sequence diagrams have been
proposed in the literature.

When researchers analyze the effectiveness of these approaches
through user studies, it is important to reveal not only what
techniques can improve developer productivity but also how
developers explore reverse-engineered sequence diagrams and
how exploration and compression features are utilized.

We developed a feature to record interactions between a devel-
oper and recovered sequence diagrams in our tool, SDExplorer.
We show how the recorded interaction data can be used for in-
depth analysis of developer activities, toward the evaluation of
visualization approaches to helping behavioral comprehension.

Index Terms—interaction data analysis, scalable sequence
diagram explorer, visualization, program comprehension

I. INTRODUCTION

Correctly understanding the runtime behavior of a system
is an essential part of software maintenance. UML sequence
diagrams are helpful to achieve this goal by visualizing the
interactions among objects in sequential order. Unfortunately,
in real-world software development, due to the fast speed
of software evolution, such design diagrams/documents are
usually outdated or non-existent [1].

Design recovery techniques give possible solutions to this
problem. Runtime information of an object-oriented system
can be recorded by utilizing tracing tools (e.g., SELogger [2]);
thereby, we can visualize the runtime behavior of a system in a
sequence diagram format, called reverse-engineered sequence
diagram [3]–[5]. This visualization approach is promising for
comprehending the actual behavior of a system; however, ow-
ing to the massiveness of execution traces, reverse-engineered
sequence diagrams are often afflicted by scalability issues.

Therefore, researchers have made much effort to improve
the readability and understandability of massive-scale se-
quence diagrams. While forward-designed diagrams ignore
implementation details and focus on the critical interactions
of key objects or classes, reverse-engineered diagrams contain
all runtime events and information including trivial elements
such as implementation details [6]. Numerous techniques for
effectively exploring or compressing sequence diagrams have
been proposed in the literature [3], [7]–[15]. These approaches

reduce comprehension cost by, for example, interactive ex-
ploration, summarizing repetitive behavior, or ignoring less
important events.

However, we consider that the effectiveness of such ex-
ploration and compression techniques in the actual develop-
ment tasks is not well evaluated yet; it needs to clarify the
advantages and disadvantages of utilizing those techniques.
When researchers analyze the effectiveness of exploration
and compression features for massive-scale sequence diagrams
through user studies, it is important to reveal not only what
features can improve developer productivity, or how devel-
opers feel on each feature, but also how developers explore
diagrams, and how exploring and compressing features are
utilized. Moreover, it likewise needs to evaluate the effect
of combining multiple exploring and compressing features in
terms of program comprehension.

To this end, we develop a feature to record interactions be-
tween a developer and reverse-engineered sequence diagrams
in our tool, SDExplorer [15]. The SDExplorer supports popular
features of existing sequence diagram visualization tools (e.g.,
searching, filtering, compressing, etc).

We conduct a user study for recording interaction logs
about how diagrams are explored and how features are utilized
in program comprehension tasks. Then, we show how the
interaction data can be used for in-depth analysis of devel-
oper activities, toward evaluating visualization approaches to
helping behavioral comprehension; by visualizing the recorded
logs, we try to capture behavioral patterns of developers in
program comprehension tasks, and then show some first results
and interpretations thereof.

II. RELATED WORK

Numerous trace visualization approaches to helping behav-
ioral comprehension have been proposed in the past decades.

Cornelissen et al. reviewed the history of them [16]. From
the report, we know it is 30 years since Kleyn and Gingrich
pointed out the value of visualizing runtime behavior [17].
Pauw et al. presented several kinds of visualization of the
runtime behavior of Java programs [18], and introduced some
preliminary compressing techniques [19]. JAVAVIS was then
proposed for an educational purpose [20]. SEAT and OASIS
were developed in 2004 for software comprehension [5], [21].
SEAT team then focused on techniques for summarizing the

978-1-7281-0956-5/19/$31.00 c© 2019 IEEE MAINT 2019, Hangzhou, China19

message sequence in traces [8], while OASIS team made a
survey on features of sequence diagram visualization tools [3].
JIVE was first proposed in 2007 [22], and Jayaraman et al.
added compaction features to it [13]. Extravis uses massive
sequence and circular bundle views to visualize the runtime be-
havior and call relationships of objects [23]. Diver provides a
feature to compress repetitive behavior in a recovered sequence
diagram by utilizing source code and debug information [24].

In the research field of program behavior visualization,
there are four types of evaluation approaches: case study,
preliminary, user feedback, and user study [16]. Unfortunately,
little existing work conducted user studies; we found two in
the above-mentioned related work.

Bennett et al. surveyed features of sequence diagram visu-
alization tools [3]. They conducted a user study to evaluate the
effectiveness of tool features. In the study, participants were
asked to complete program comprehension tasks with their
tool, OASIS. As a result, they concluded the usefulness of tool
features, and then made a suggestion on feature improvements
and new features.

Cornelissen et al. did a controlled experiment to measure the
usefulness of their tool, Etravis [16]. Participants performed
software comprehension tasks with and without Extravis, and
the time and correctness for each task were measured. They
concluded that utilizing Extravis has a positive effect on
software comprehension.

As for the evaluation of sequence diagram compression
techniques, a common quantitative evaluation measure is com-
pression ratio [7], [9], [10], [13], [24], while a few studies
prepared ground truths and evaluated performance [12].

III. SDExplorer IN A NUTSHELL

SDExplorer [15] is a browser-based visualization tool. Fig. 1
shows a snapshot of SDExplorer. It provides rich features
for effectively exploring sequence diagrams and achieves
high scalability with data and UI virtualization. We showed
that SDExplorer could smoothly explore a sequence diagram
of over 2,000,000 messages and 3,000 objects; the average
rendering time (including the time to load trace data from a
database) for such a large-scale sequence diagram was 490
msec, and most operations could be done within 1 sec [15].

In what follows, we briefly describe the architecture and
features of SDExplorer. The more details of SDExplorer are
described in our previous paper [15]

A. Architecture

SDExplorer takes execution traces and optional group/loop
information as its input. Users need to prepare the input data
in a JSON format.

SDExplorer consists of two components: controller and
renderer. The controller loads the input data from a database
(or directly from a JSON file) onto a memory, and the renderer
renders a portion of the memory data as a sequence diagram
on a display.

To achieve high scalability, SDExplorer applies data and UI
virtualization strategies while handling a massive-scale trace

Fig. 1. Snapshot of SDExplorer.

data. Only a fragment of input trace data around a window
is fetched from a database, and the smaller part is actually
(re-)rendered. User operations, such as zooming and moving,
trigger an update request, so that the part to visualize is re-
calculated and the sequence diagram is updated on demand.

SDExplorer supports vertical and horizontal compaction
(i.e., grouping messages and lifelines) according to input data.
Thus, existing techniques for trace compression can be easily
combined with our tool. Moreover, because SDExplorer is
provided as a JavaScript library, it can be easily integrated
with other tools or embedded into documents [25].

B. Features

Based on the investigation of the characteristics of reverse-
engineered sequence diagrams and popular features of existing
tools, we implemented the following features in SDExplorer.

• Zooming/Moving. Users can zoom-in/out and move a
diagram with a mouse.

• Loop summarization. SDExplorer supports folding/un-
folding messages by summarizing loops (repetitive be-
havior). Users can specify loop information as the input
of SDExplorer. A built-in loop detector can be used if
users do not provide any loop information.

• Lifeline folding/unfolding. SDExplorer supports hierar-
chical object (lifeline) grouping. Clicking on a folded
group (lifeline) will unfold it, and then hidden objects
(lifelines) will appear. Likewise, clicking on an unfolded
object group will fold objects into the group.

• Searching. While exploring large sequence diagrams, it
is almost impossible to find messages and lifelines of
interest only with zooming and moving. Users can query
a database for finding messages (and caller/callee thereof)
of interest, and move to the positions of found messages.

• Filtering. To satisfy the demand for focusing only on
the interactions between certain objects of interest, a
filtering functionality is provided. If users specify several
objects of interest, a filtered sequence diagram would be
displayed.

20

TABLE I
DETAILS OF OPERATION LOGS.

Operation Type Attribute

Move Window location
Zoom Window location; Scale
Compress (Fold loops) Window location
Decompress (Unfold loops) Window location
Grouping (Fold object groups) Group id
Ungrouping (Unfold object groups) Group id
Search Search query;

Items selected in a result-set
Filter Filter query
Filter-cancel -
Hintbox Message id
Nearby Message id
InitSize (Reload the page) Window size

• Hintbox. A hintbox will pop up by a double click on a
message, which shows the caller, callee, and signature of
the message.

• Showing nearby objects. By clicking the nearby button,
the horizontal order of lifelines are re-arranged to make
the view more readable; objects interacting with one
another are arranged in close proximity.

C. Logging User Operations

For interaction-based analysis, SDExplorer can record de-
veloper operation logs. Every log entry has an operation type,
attributes, and an event timestamp.

The recorded operations and attributes thereof are listed
in Table I. For example, a “Move” type log is {type: Move,
attribute: [-179,100], timestamp: 2019-01-02 10:25:30}.

With operation logs, we can accurately know how users read
a sequence diagram to complete comprehension tasks.

IV. INTERACTION DATA ANALYSIS

We conduct a user study to investigate how reverse-
engineered sequence diagrams are explored and how tool
features are utilized. In the study, we design 4 program com-
prehension tasks on JHotDraw, which are based on specific
types of reverse engineering tasks proposed by Pacione et
al. [26]. After that, we generate a sequence diagram from one
execution of JHotDraw. Then, we invite 14 graduate students,
who each have Java experience of at least more than 2 years,
to solve the comprehension tasks. They can only read the
sequence diagram, and source code is not available.

In the following, we show how we can analyze subject
behavior by using interaction data with some examples.

A. Visualizing Interaction Data

Handling a large number of raw operation logs is trouble-
some. Inspired by Minelli et al. [27], we take an approach to
visualizing the operation logs.

Reviewing collected operation logs, we classify the oper-
ation events (see Table I) in SDExplorer into the following
three types.

Move / Zoom Search Filter

Other operations No operations

Time

1 min

Fig. 2. Visualization of operation logs.

Fig. 3. Typical patterns of shifting and navigating operations.

• Shifting. Both moving and zooming belong to this type.
These operations frequently appear in logs because a
reverse-engineered sequence diagram is usually too large
to display in a screen. Shifting operations can only move a
small distance; users tend to continually perform shifting
operation until messages of interest are found (see the
blue ’blocks’ in Fig. 2).

• Navigating. Searching and filtering are categorized into
this type. By these operations, users try to find impor-
tant information where they start comprehension. Unlike
shifting operations, navigating operations need input (i.e.,
searching or filtering queries). When users perform this
type of operations, they tend to have some expectations
or hypotheses about the behavior of a subject system.

• Supporting. This category contains other types of oper-
ations, such as lifeline folding/unfolding and nearby,
which are used to facilitate user understanding of se-
quence diagrams displayed.

Fig. 2 shows an example of visualized operation logs. In
visualized logs, “shifting” (resp. “supporting”) operations are
marked in blue (resp. red). “Navigating” operations are dis-
played separately because they play different roles in finding
important information.

In addition to those types of operations, non-operation
periods are likewise essential. During the study, users could
either read sequence diagrams or take notes if they did not
perform any operations. In other words, a long-time non-
operation period usually means that users are understanding
the contents displayed on the screen. We mark the periods of
non-operations in yellow.

B. Patterns in Operation Logs

First, we summarize the typical patterns of shifting and
navigating operations. Fig. 3 shows four most frequently
appearing patterns.

For shifting operations, the pattern 1⃝ shows user actions
of moving around. This pattern usually appears when users

21

Repeat navigating Repeat shifting

Understanding Shoft-time understanding

Search

Filter

Fig. 4. Real example of operation logs.

want to find something. For example, when users seek for
some messages, they tend to move around and take a glance
at nearby messages. Some very short-time periods of non-
operations appear in the pattern 1⃝. Usually, these periods
are not understanding time, but a quick view of surrounding
messages. The appearance of the pattern 1⃝ means that users
have not found important information yet, and keep moving.
Thus, the pattern 1⃝ usually has low value in program com-
prehending. The pattern 2⃝ of shifting operation appears when
users locate some important information they want. The rather
long-time non-operation period after a continual shifting is
understanding time.

Similarly, for navigating operations, the pattern 3⃝ means
that users perform some navigating operations, but imme-
diately give up and try to navigate by other information.
However, it is also possible that users are correcting the
query of searching step by step. Users have to input a query
for navigating, which means they have some assumption or
ideas before performing navigating operations. Thus, these
operations are usually more valuable than shifting. After all,
the pattern 4⃝ of navigating still has much more value than
the pattern 3⃝ because of the longer understanding phases.

While handling operation logs, these patterns would appear
sequentially or concurrently. Fig. 4 shows a real example of
visualized operation logs containing these four patterns.

C. Analyzing Critical Comprehension Activities

While reading large sequence diagrams, only a limited num-
ber of messages and lifelines can be displayed in a window. We
defined critical messages, which are important for comprehen-
sion tasks participants undertake, in a sequence diagram. With
the definition of critical messages, the recorded operation logs
can be used for the analysis of whether participants correctly
found the important information in the diagram. If those
critical messages are displayed in the window, we assume
that users are understanding important behavioral aspects of a
subject system. We call this kind of understanding activities
critical parts. To analyze critical parts, we add a critical bar
to visualized operation logs as shown in Fig. 5.

Fig. 6 shows a portion of actual operation logs with a critical
bar. Both participants ((a) and (b) in Fig. 6) got low scores
because they were understanding wrong places. The difference
between (a) and (b) is that (a) took a relatively long time
understanding of critical parts while (b) sometimes overlooked
critical parts. As a result, even if (a) failed to fully understand

search

filter
critical

Score: 5

search
Score: 0

search

filter
critical

Score: 2

1 min

TimeMove / Zoom Search Filter

Other operations No operations Critical part

Fig. 5. Example of visualization of critical parts.

(a) Score: 2

(b) Score: 0

1 min
Search

Filter
Critical

Search

Filter
Critical

Fig. 6. Real examples of operation logs with critical bars.

the roles of the class important for the tasks s/he undertook,
it was possible to list up some important methods. However,
(b) paid attention to totally wrong places; thus, s/he resulted
in a score of 0 points.

As described above, through visualization of operation logs
with critical bars, we can interpret the details of developer
activities and the degree of their understanding; we consider
that this can be a valuable tool for detailed evaluation of
visualization approaches to helping behavioral comprehension.

V. CONCLUSION

When researchers analyze the effectiveness of techniques
for effectively exploring or compressing massive-scale se-
quence diagrams through user studies, it is important to reveal
not only what techniques can improve developer productivity,
but also how developers explore sequence diagrams and how
exploration and compression features are utilized.

In this paper, we introduced a feature of SDExplorer to
record developer interactions on reverse-engineered sequence
diagrams. Through visualization of operation logs with critical
bars, we found some behavioral patterns of developers, which
enables us to interpret the degree of their understanding;
the interaction data can help in-depth evaluation of sequence
diagram-based visualization approaches to helping behavioral
comprehension.

We plan further and more detailed evaluation of se-
quence diagram exploration and compression features based
on recorded interaction data, subject feedbacks, and scores;
we try to reveal what types of features are effective for what
types of comprehension tasks in what types of contexts.
Acknowledgment: This work was partly supported by MEXT
KAKENHI Grant Numbers JP15H02683, JP18H03221 and
JP18J15087.

22

REFERENCES

[1] W. Kirchmayr, M. Moser, L. Nocke, J. Pichler, and R. Tober, “Integration
of static and dynamic code analysis for understanding legacy source
code,” in Proc. ICSME, Oct 2016, pp. 543–552.

[2] T. Matsumura, T. Ishio, Y. Kashima, and K. Inoue, “Repeatedly-
executed-method viewer for efficient visualization of execution paths
and states in java,” in Proc. ICPC, 2014, pp. 253–257.

[3] C. Bennett, D. Myers, M.-A. Storey, D. M. German, D. Ouellet,
M. Salois, and P. Charland, “A survey and evaluation of tool features
for understanding reverse-engineered sequence diagrams,” Journal of
Software: Evolution and Process, vol. 20, no. 4, pp. 291–315, 2008.

[4] T. A. Ghaleb, M. A. Alturki, and K. Aljasser, “Program comprehension
through reverse-engineered sequence diagrams: A systematic review,”
Journal of Software: Evolution and Process, vol. 30, no. 11, 2018, e1965
smr.1965.

[5] A. Hamou-Lhadj, T. C. Lethbridge, and L. Fu, “Challenges and require-
ments for an effective trace exploration tool,” in Proc. IWPC, 2004, pp.
70–78.

[6] A. M. Fernández-Sáez, M. Genero, M. R. Chaudron, D. Caivano, and
I. Ramos, “Are forward designed or reverse-engineered UML diagrams
more helpful for code maintenance?: A family of experiments,” Infor-
mation and Software Technology, vol. 57, pp. 644–663, 2015.

[7] K. Taniguchi, T. Ishio, T. Kamiya, S. Kusumoto, and K. Inoue, “Extract-
ing sequence diagram from execution trace of java program,” in Proc.
IWPSE, 2005, pp. 148–154.

[8] A. Hamou-Lhadj and T. Lethbridge, “Summarizing the content of large
traces to facilitate the understanding of the behavior of a software
system,” in Proc. ICPC, 2006, pp. 181–190.

[9] K. Noda, T. Kobayashi, S. Yamamoto, M. Saeki, and K. Agusa,
“Reticella: an execution trace slicing and visualization tool based on
a behavior model,” IEICE Transactions on Information and Systems,
vol. 95, no. 4, pp. 959–969, 2012.

[10] T. Toda, T. Kobayashi, N. Atsumi, and K. Agusa, “Grouping objects
for execution trace analysis based on design patterns,” in Proc. APSEC,
2013, pp. 25–30.

[11] A. Alshanqiti, R. Heckel, and T. Kehrer, “Visual contract extractor: a
tool for reverse engineering visual contracts using dynamic analysis,” in
Proc. ASE, 2016, pp. 816–821.

[12] K. Noda, T. Kobayashi, T. Toda, and N. Atsumi, “Identifying core
objects for trace summarization using reference relations and access
analysis,” in Proc. COMPSAC, 2017, pp. 13–22.

[13] S. Jayaraman, B. Jayaraman, and D. Lessa, “Compact visualization of
java program execution,” Software: Practice and Experience, vol. 47,
no. 2, pp. 163–191, 2017.

[14] R. Sharp and A. Rountev, “Interactive exploration of UML sequence
diagrams,” in Proc. VISSOFT, Sep. 2005, pp. 1–6.

[15] L. Kaixie, K. Noda, and T. Kobayashi, “SDExplorer: a generic toolkit
for smoothly exploring massive-scale sequence diagram,” in Proc. ICPC,
2018, pp. 380–384.

[16] B. Cornelissen, A. Zaidman, and A. van Deursen, “A controlled ex-
periment for program comprehension through trace visualization,” IEEE
Transactions on Software Engineering, vol. 37, no. 3, pp. 341–355, 2011.

[17] M. F. Kleyn and P. C. Gingrich, “GraphTrace – understanding object-
oriented systems using concurrently animated views,” in Proc. OOPSLA,
1988, pp. 191–205.

[18] W. De Pauw, R. Helm, D. Kimelman, and J. Vlissides, “Visualizing
the behavior of object-oriented systems,” in Proc. OOPSLA, 1993, pp.
326–337.

[19] W. De Pauw, E. Jensen, N. Mitchell, G. Sevitsky, J. Vlissides, and
J. Yang, “Visualizing the execution of java programs,” in Proc. Software
Visualization, 2002, pp. 151–162.

[20] R. Oechsle and T. Schmitt, “Javavis: Automatic program visualization
with object and sequence diagrams using the java debug interface (JDI),”
Software Visualization, pp. 176–190, 2002.

[21] M. Lizotte and J. Rilling, “Oasis: Opening-up architectures of software-
intensive systems,” Defence Research and Development Canadaval-
cartier (QUEBEC), Tech. Rep., 2004.

[22] S. P. Reiss, “Visual representations of executing programs,” Journal of
Visual Languages & Computing, vol. 18, no. 2, pp. 126–148, 2007.

[23] B. Cornelissen, A. Zaidman, D. Holten, L. Moonen, A. van Deursen,
and J. J. van Wijk, “Execution trace analysis through massive sequence
and circular bundle views,” Journal of Systems and Software, vol. 81,
no. 12, pp. 2252–2268, 2008.

[24] D. Myers, M.-A. Storey, and M. Salois, “Utilizing debug information
to compact loops in large program traces,” in Proc. CSMR, 2010, pp.
41–50.

[25] Y. Ishida, Y. Arimatsu, K. Lyu, G. Takagi, K. Noda, and T. Kobayashi,
“Generating an interactive view of dynamic aspects of API usage
examples,” in Proc. DysDoc3, 2018, pp. 13–14.

[26] M. J. Pacione, M. Roper, and M. Wood, “A novel software visualisation
model to support software comprehension,” in Proc. WCRE, 2004, pp.
70–79.

[27] R. Minelli, A. Mocci, M. Lanza, and T. Kobayashi, “Quantifying
program comprehension with interaction data,” in Proc. QSIC, 2014,
pp. 276–285.

23

